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In response to adverse conditions, myxobacteria form aggregates which develop into fruiting bod-
ies. We model myxobacteria aggregation with a lattice cell model based entirely on short range
(non-chemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation
mediated by transient streams. Aggregates resemble those observed in experiment and are stable
against even very large perturbations. Noise in individual cell behavior increase the effects of streams

and result in larger, more stable aggregates.

PACS numbers: 87.18Ed, 05.65.+b, 87.18.Hf, 05.40.Ca

Introduction.— Fruiting body formation in bacteria oc-
curs in response to adverse conditions [1] and is critical
for species survival. To form fruiting bodies, many cells
must first aggregate. Complex, multi-stage morphogene-
sis must be robust despite internal and external noise.

Canonically, models for bacteria (e.g. E. Coli [2, 3] and
Bacillus subtilis [4, 5]) and amoebae (e.g. Dictyostelium
discoideum [5, 6]) aggregation have been based on attrac-
tive chemotaxis, a long range cell interaction that shares
many features of chemical reaction-diffusion dynamics.
Initialization of chemotactic signals plays an important
role in the initial position of aggregates [2, 7] and sub-
sequent signaling biases cell motion towards developing
aggregates [2]. Cells following the maximal chemical gra-
dient navigate towards aggregates which are large and
near. In myxobacteria, however, aggregates form with-
out the aid of chemotactic cues [8, 9]. Yet myxobacteria
travel large distances to enter an aggregate [10]. Recent
cell models based on cell collisions has reproduced the
myxobacteria rippling patterns that proceed aggregation,
but did not attempt to model aggregation [11].

During aggregation, myxobacteria cells are elongated
with a 7:1 length to width ratio (cells are typically 2 to
12 by 0.7 to 1.2 pm [12]). They move on surfaces by
gliding along their long axis [13]. The stages of fruit-
ing body development, including aggregation, are con-
trolled by a membrane-associated signaling protein C-
factor. Cells lacking C-factors fail to aggregate [14] while
high concentrations of exogenous C-factor induce aggre-
gation [15, 16]. Cells exchange C-factors at cell poles
[16-19]. Gliding motility accounts for cell-cell alignment
which is required for C-factor exchange [17, 19, 20] and
subsequent C-signaling further induces alignment [21].
Aggregates range in size between 10 and 1,000 ym and
are composed of 10% to 106 cells [12].

Several models have been proposed to explain
myxobacteria aggregation [9]. One describes aggrega-
tion by cells following slime trails deposited by other
cells, but finds these aggregates unstable without ad-
ditional chemotaxis [22]. Another suggests that cells
form streams by sequential end-to-end contacts due to
C-signaling, which coalesce or spiral in on themselves.
This model predicts that aggregates remain unstable as

long as cells are motile [21]. However, experiments show
cells move with faster velocities within aggregates [23].

We report a new mechanism for aggregate formation
in myxobacteria: short range interactions facilitated by
streams. This mechanism, based entirely on local cell-cell
interactions, accounts for both initialization and forma-
tion of large stable aggregates in a two-stage process.
First, aggregates appear in random positions and cells
join aggregates by random walk. Second, the aggregates
reorganize as cells redistribute by moving within tran-
sient streams connecting aggregates. We use a template-
based cell model introduced in [24].

Model.— Our model is based on local rules by which
cells turn preferentially in directions that increase their
level of C-signaling. Cells move on a hexagonal lattice
with periodic boundary conditions in all directions. Unit
velocities (or channels) are allowed in each of the six di-
rections. Cells are initially randomly distributed with
cell density 10, where cell density is the total cell area
divided by total lattice area. We model identical rod-
shaped cells as 3 x 21 rectangles and assume a cell size
of 1 x 7 ym. Each cell is represented as follows: (1)
a single occupied lattice node corresponds to the posi-
tion of the cell’s center in the xy plane, (2) an occupied
channel at this node designates cell’s velocity, and (3) a
local neighborhood defines the physical size and shape
of the cell. By an exclusion rule, there may only be one
cell center per channel per node. We also keep track
of the C-signal exchange neighborhood of each occupied
node which defines the possible locations of end-to-end
overlaps between C-signaling cells. The total C-signaling
neighborhood for each cell is fourteen nodes; seven at
each cell pole separated by one half a cell length from the
cell center. Representing a cell as an oriented point with
an associated cell-shape is computationally efficient, yet
approximates aggregates more closely than using point-
like cells. We have also solved the cell stacking problem
since overlapping cell shapes correspond to cell stacking.
For example, for these 3 x 21 cells, up to 378 cells may
stack over a node without violating the exclusion rule.

Cells first turn stochastically 60 degrees clock-wise or
counter-clockwise, or stay in its current direction. Our
model favors directions that maximize the overlap of the



FIG. 1: Aggregation stages on a 500 x 500 lattice, which
corresponds to an area of 2.8 cm?. Local cell density after (a)
200, (b) 900, and (c) 25,000 timesteps. Average cell density is
10. The number of simulated cells is 39,507. The darker shade
of gray corresponds to higher cell density. (d) Directions of
cell centers within a typical annular aggregate.
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FIG. 2: The stream formation from two adjacent aggre-
gates. Panels left to right correspond to 900, 1000, and 1200
timesteps, respectively. Lattice size is 128 x 128.
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C-signal exchange neighborhood at the head of a cell with
the C-signal exchange neighborhood at the tails of neigh-
boring cells. This rule causes cells to align, which is a
simplification of the hypothesis that alignment induces
C-signaling which further induces cell alignment. Then,
all cells move synchronously one node in the direction of
their velocity by updating the positions of their centers.

Simulation Results.— Cells aggregate in distinctive
stages in our simulations. During the first stage, cells
turn from low density areas towards areas of slightly
higher cell density. Initially randomly distributed cells
condense into small stationary aggregates (Fig. 1 (a)).
These aggregate centers grow and absorb immediately
surrounding cells. Next, some adjacent stationary aggre-
gates merge and form long, thin streams which extend
and shrink dynamically on their own and in response to
interactions with other aggregates (Fig. 1 (b)). In each
stream cells move head to tail with each other in either
direction along the stream. These streams are transient
and eventually disappear at later stages of the simulation,
leaving behind a new set of larger, denser stationary ag-
gregates which are stable over time (Fig. 1 (c)). Cells
in a typical aggregate form an annulus of aligned cells
tangent to a hollow center (Fig. 1(d)).

Figure 2 shows the details of stream formation from
two interacting aggregates. Initial aggregates crowd as
they grow. When the distance between aggregates is less
than one cell length, they begin exchanging cells, and the
cells reorganize into a stream. In contrast to stationary
aggregates, cells travel long distances in streams.

Role of noise.— We measure the areas and densities
of every stationary aggregate which appeared over the
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FIG. 3:  Area-density phase diagram for (a) 186 station-

ary aggregates identified within two simulations over 25000
timesteps, (b) an initially small aggregate to which cells are
slowly added over 1000 timesteps, and (c) an artificially con-
structed aggregate (star) over 600 timesteps. Relaxation of
perturbation data in (b) and (c) are plotted every 10 timesteps
on top of (a).
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FIG. 4: Effects of external and internal noise. Standard de-
viation of lattice cell density over 3,500 timesteps for (a) two
stochastic simulations with different initial conditions and (b)
two stochastic simulations (solid lines) and one deterministic
simulation (dotted line) with the same initial conditions.

course of two simulations. These aggregates fall within
a narrow range in the area-density phase diagram shown
in Fig. 3 (a), illustrating that for an aggregate of a given
cell number, its area and density is prescribed within a
narrow region, which we call an attractor region. We now
analyze the stability of this attractor region with respect
to two kinds of noise: 1) external noise, including those
in the initial random distribution of cells and our pertur-
bations to the system; 2) internal noise, which originate
from the stochastic nature of the cell’s turning process.
1. External noise. — Figure 4 (a) shows simulation
results for different random initial conditions. The stan-
dard deviation of lattice density increases with similar
slope and to similar levels in the two simulations, indi-
cating that pattern formation and simulation dynamics
are not very sensitive to noise due to initial conditions.
Next we perturb a stable aggregate in two ways. First,
we study an adiabatic perturbation by gradually adding
cells to an initially small, isolated aggregate. As cells are
slowly added, the aggregate increases in area and density
while remaining within the attractor region (Fig. 3(b)).
Second, we introduce a non-adiabatic perturbation by
placing two duplicate aggregates in close proximity of



each other, which creates a new aggregate with double
the initial area and the same density. Over 600 timesteps,
this aggregate gradually reorganizes so that it has an
area and density within the stable region (Fig. 3(c)).
Results from both kinds of perturbations suggest that
this attractor region is a stable attractor in the area-
density phase space of aggregates.

This area-density phase diagram does not only pre-
scribe the region of stable aggregates, but also helps us to
understand the formation and stability of streams. When
two stationary aggregates of similar size and density in-
teract in the first stage, their area is doubled while their
density remains approximately the same. Thus, the new
aggregate formed lies off the attractor region. Large ag-
gregates with high cell density and area will fuse and
quickly form a new stationary aggregate as in Fig. 3 (c).
Smaller fused aggregates have a longer transient stage
and are likely to form streams. Due to C-signaling, the
cells form end-to-end contacts which lead them to align in
a stream. This stream is bi-directional, with cells flowing
equally in both directions along the stream. Given the
end-to-end contacts required for C-signaling, an infinitely
long stream of cells flowing in two directions is obviously
a stable arrangement. However, there are a fixed number
of cells within simulation streams, and thus streams are
of finite length. Cells at the end of streams are not sta-
ble since cells do not C-signal in the open space, hence
cells at these locations will diffuse without any preferred
direction. Though some cells diffuse away, most cells ran-
domly turn within a number of timesteps back into the
stream. Once cells are re-directed towards the stream,
their direction is locked since they are again C-signaling
with the stream cells. Cells turning back into the stream
over time causes the stream to gradually contract into a
stable aggregate.

2. Internal noise. — To evaluate the roles of inter-
nal noise, we devise an equivalent deterministic model.
Instead of using a stochastic process to model cell turn-
ing, we use the following function to decide on the cell
orientation for the next step:

filr,k +1) = fie(r — cie , K)QUr — cio, k, ci)

+fio(r—cie, B)Qr —ce, k, ci) + fi(r — i, K)QUr, k, ¢;)
where f is the particle density distribution function over
each lattice node r, k is the timestep, and c¢;, c;o, and
c;o represent velocity vectors in the ith direction, one
turning clockwise from the ith direction, and one turn-
ing counter-clockwise respectively. The collision function
Q(r, k,1) is the probability of a cell at the node r turn-
ing towards direction ¢ at the kth timestep. We drop
the exclusion principle so that the density of cells may
be greater than 1 at a node. This function effectively
converts the stochastic process of cell turning into a con-
tinuous distribution function, analogous to the process of
changing a stochastic lattice gas model to a deterministic
lattice Boltzmann model [25].

Our simulations show that this deterministic model
evolves similarly to the stochastic model, indicating that
the aggregation dynamics are not sensitive to internal
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FIG. 5: Distribution of stationary aggregate areas for (a) a
stochastic simulation after 29000 timesteps and (b) the equiv-
alent deterministic simulation after 3500 timesteps. Both dis-
tributions represent the final stable distribution.

noise. Figure 4 (b) shows the standard deviation of av-
erage cell density over time for two stochastic and one
deterministic simulation with identical initial conditions.
As in the stochastic model, the deterministic model pro-
ceeds in stages. First many small aggregates appear, then
streams form between interacting aggregates, until the
streams dissolve and leave behind a larger set of aggre-
gates. One important difference is that streams in the
deterministic model are fewer and smaller. Another dif-
ference is that streams are shorter-lived, and the deter-
ministic simulation reaches a steady state much faster.
These differences have a critical effect on the way ag-
gregates reorganize. Comparing the size distribution of
aggregates in the stochastic model (Fig. 5(a)) with that
of the equivalent deterministic model (Fig. 5(b)), we see
that with the internal noise, aggregates can reach larger
sizes. This is not surprising because noise slows the pro-
cess of stream contraction so that streams persist longer
and span a greater area, which enables more aggregates
to interact and eventually form larger, more stable ag-
gregates.

Discussion.— In our simulations, streams redistribute
cells within fewer, larger aggregates (compare Fig. 1 (a)
and (c)). This is a new mechanism for large, stable ag-
gregate formation in which aggregates form at random
and then redistribute. The mechanism is robust since
streams form when growing aggregates develop too close
together. Cells can then span great distances by moving
within streams. Streams resettle into stationary aggre-
gates by moving into a pre-existing stationary aggregate
or by gradually thickening and contracting.

The aggregates in our simulation reproduce the unique
structures of several myxobacteria fruiting bodies. In
Muyzococcus xanthus, the basal region of the fruiting body
is a shell of densely packed cells which orbit both clock-
wise and counter-clockwise around an inner region only
one-third as dense [23, 26]. A magnified picture of the cell
centers of a typical aggregate in our simulation show that
cells are arranged in a dense, concentric layer tangent to
a relatively low-density inner region (Fig. 1 (d)) and
cell tracking shows that cells orbit either clockwise or
anti-clockwise along the periphery of the orbit. Further,



aggregates in our simulation often form in clusters of two
or three closed orbits while in Stigmatella erecta, several
fruiting bodies may form in groups and fuse [12].

In experiments, one myxobacteria aggregate has been
observed to mysteriously grow as an adjacent aggregate
disappears [27]. Our simulations offer a mechanism for
this process: a stream may form connecting two adjacent
aggregates and, following a C-signaling line of cells, cells
stream from the smaller aggregate to the larger aggre-
gate. Experimentally, these streams may not be visible
if the density threshold for viewing cells is greater than
the density found within the stream.

This mechanism suggests several predictions which
may be tested experimentally. We predict that the for-
mation of streams and subsequent redistribution of ag-
gregates will be most significant for intermediate initial
cell densities. At low density, the initial set of aggre-
gates will form further apart and will not grow as large.
At high cell density, very large, dense aggregates form,
which fuse immediately into a larger aggregate when they
interact rather than forming a stream. The role of ex-
ternal noise can be experimentally tested by reproducing
the perturbation experiments we describe in Figure 3(b)
and 3(c). Cells may be slowly added to a small aggregate
or quickly added to an aggregate by a large amount to ob-
serve the cell reorganization over time. Finally, the role
of internal noise can be tested experimentally by tuning
the amount of C-factor in the cell aggregates. For exam-

ple, C-signaling can be decreased by diluting a wild-type
population with non-C-signaling cells (increasing inter-
nal noise) or individual cell C-signaling levels can be in-
creased (decreasing internal noise).

Summary.— Our lattice cell model is based on a very
simple local rule in which cells align by turning pref-
erentially to make end to end contacts. This mimics
C-signaling in myxobacteria, which drives myxobacteria
aggregation. Myxobacteria cells behave in a collective
way without losing their identity as individual cells. In
our simulations, distinct aggregate types form which have
different behaviors and roles even though they are com-
posed of identical cells following identical rules. Large,
stationary aggregates are most stable, but an intermedi-
ate motile aggregate forms which aids in large aggregate
formation. An interesting discovery is that the presence
of some internal noise is required for efficient streaming.
It is as if the cells must make short-term mistakes for the
formation of unstable transients that ultimately results
in more efficient aggregation. Our analyses of streams
and the role of noise suggest some new experiments.
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